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Problem set #10

Problem 1 Halo potential energy

Collapsed dark matter halos have a universal density profile first described by Navarro,
Frenk, and White (NFW) in 1996. Consider a dark-matter halo with NFW density profile,
i.e.

ρ(r) =
ρS

x (1 + x)2
with x =

r

rS
. (1)

(a) Argue why the total potential energy of the halo must be of the form

Epot = −α
GM2

S

rS
with MS = 4πr3SρS , (2)

where α is a dimension-less constant.

(b) Calculate the enclosed mass M(< r) in terms of x. Confirm that the gravitational
potential of a NFW halo is

Φ(r) = −
GMS

rS

ln (1 + x)

x
. (3)

(c) Find α by integrating the potential over infinitesimal mass shells, Epot =
∫

∞

0
Φ(r)dM(r).

Problem 2 Halo gas density

The NFW density profile diverges in the centre, i.e. for x → 0. Gas filled into the halo’s
gravitational potential Φ satisfies Euler’s equation

~∇pgas
ρgas

= −~∇Φ , (4)

where pgas is the gas pressure.

(a) Assuming an isothermal and ideal gas, show that the gas density profile is

ρgas = A exp

(

−
m̄Φ

kT

)

, (5)

where T is the temperature, k is Boltzmann’s constant, m̄ is the mean particle mass,
and A is a constant.

(b) Using equation (3) from problem 1, argue that

−
m̄Φ

kT
= 3

ln (1 + x)

x
(6)

if the gas is in equilibrium with the gravitational potential in the centre. Is the gas
density finite in the halo’s centre?
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Problem 3 Gravitational Lens Equations

In the lecture the gravitational lens equation was derived. It maps observed image positions
to source positions. The lens equation can be written as

~η =
Ds

Dd

~ξ −Dds
~̂α(~ξ), (7)

where ~η and ~ξ are vectors in the source and lens/image plane (see Figure 1), Ds, Dd, and

Dds are diameter distances, and ~̂α(~ξ) is the light deflection an observer would measure if
(s)he were “sitting in the lens”:

~̂α(~ξ) =
4G

c2

∫

Σ(~ξ′)
~ξ − ~ξ′

|~ξ − ~ξ′|2
d2~ξ′.

More relevant is what can be seen on the sky (angular positions) and therefore the lens
equation (7) is often transformed into angular coordinates:

~β = ~θ −
Dds

Ds

~̂α(~θ) ≡ ~θ − ~α(~θ),

~α = Dds

Ds

~̂α is the deflection angle we can observe, ~β = ~η/Ds and ~θ = ~ξ/Dd.

The most simple lens is a point mass, where

~̂αPM(~ξ) =
4GM

c2

~ξ

|~ξ|2
≡ 2RS

~ξ

|~ξ|2

holds. The lens equation then reads

~β = ~θ −
Dds

DsDd

4GM

c2

~θ

|~θ|2
.

Note that this is a two-dimensional vector equation and you can use whatever coordinate
system which is convenient to evaluate quantities. Two popular ones are the Cartesian and
the polar coordinate systems. Since a point mass is certainly azimuthally symmetric, there
exists only one component in the deflection angle (you can think of the radial one, or if you
are in Cartesian coordinates, you can choose any as the x-axis of the system).

You obtain a scalar equation

β = θ −
Dds

DsDd

4GM

c2
1

θ
.

(a) Solve the quadratic equation for the Einstein angle obtained for β = 0. Write down
the Einstein-angle and the Einstein-radius, which is the image circle at the lens.

(b) Write down the lens equation in terms of the Einstein angle. When does it have one
solution, and when does it have two? Write down the solutions. What does the sign
of the solutions mean? Calculate and sketch the separation of the two images.
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Figure 1: Gravitational lens geometry.
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