Problem set #2

Problem 1 Planck function

The Planck function, defined here in terms of a specific intensity with respect to frequency (i.e., with units $\operatorname{erg} \operatorname{cm}^{-2} \operatorname{sec}^{-1} \operatorname{Hz}^{-1} \operatorname{sr}^{-1}$), is given by

$$B_{\nu} = \frac{2h\nu^3}{c^2} \frac{1}{\exp\left(\frac{h\nu}{k_{\rm B}T}\right) - 1},$$

with Planck's constant h, frequency ν , speed of light c, Boltzmann's constant $k_{\rm B}$ and temperature T.

- (a) Derive the expression for the corresponding energy density, u_{ν} .
- (b) What is the corresponding function B_{λ} , i.e., with units $\operatorname{erg} \operatorname{cm}^{-2} \operatorname{sec}^{-1} \operatorname{cm}^{-1} \operatorname{sr}^{-1}$?
- (c) Show that Planck curves for different T do not cross each other.
- (d) Prove the Stefan-Boltzmann law and *calculate* the Stefan-Boltzmann constant $\sigma_{\rm B}$.
- (e) Prove Wien's displacement law for both B_{ν} and B_{λ} and calculate the corresponding constants. (Hint: the zeros of

 $3\exp(x_1) - 3 - x_1\exp(x_1) = 0$ and $5\exp(x_2) - 5 - x_2\exp(x_2) = 0$

are $x_1 \approx 2.82144$ and $x_2 \approx 4.96511$, respectively.)

Problem 2 Flux received from an ideal star

- What is the flux received on Earth from a star that emits blackbody radiation, has radius R, and is at a distance r from Earth?
- What is the intensity I_{ν} ?
- Why intensity I_{ν} does not change with the distance from the source, while the flux F_{ν} does?
- Given a constant (volume) opacity κ_{ν} around the star, what is the distance at which the original intensity is reduced by a factor 100 (if the stellar radiation dominates)?
- What if instead the emission from the gas around the star is comparable with the background radiation (i.e. $I_{\nu}^{0} = S_{\nu}^{0}$)?